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A  Radial  Coil  (or  Bθ Coil)

Number of Turns = N
Length of the coil = L

A radial coil has a flat loop of wire whose plane coincides with the radial
plane of the rotating cylinder. The two sides of the loop are located at radii R1

and R2, as shown above. The flux through the coil at an angular orientation θ
is:
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If the coil rotates with an angular velocity ω and θ = δ is the angular position
at time t = 0, then  θ = ωt + δ. The flux as a function of time is then:
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A  Radial  Coil  (or  Bθ Coil)

Number of Turns = N
Length of the coil = L
Angular position at time t=0: δ
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The voltage signal induced in the radial coil is:
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The amplitude of the voltage signal is proportional to the angular velocity.
For analysis based on voltage signals, it is essential to control the angular
velocity and make corrections for any speed fluctuations. The integrated
voltage signal gives the flux, which is independent of angular velocity.

The above expressions assume that the two sides of the coil loop are located
on the same side of the origin, as shown in the figure. If the two sides are
located on opposite sides of the origin, as is true for many practical coils, then
one should replace R1  by  –R1 in the above equations.
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A  Tangential  Coil  (or  Br Coil)

Number of Turns = N
Length of the coil = L
Opening Angle = ∆

A tangential coil has a loop of wire whose plane is at right angles to the radius
vector through the center of the loop. The two sides of the loop are both
located at a radius of Rc, as shown above. The flux through the coil at an
angular orientation θ is:
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If the coil rotates with an angular velocity ω and θ = δ is the angular position
at time t = 0, then  θ = ωt + δ. The flux as a function of time is then:

Φ
∆

( ) sin ( )sin( )t
NLR

n
R

R
n

C n n t n nref c

ref

n

n
n

=
















+ −
=

∞

∑
2

21
ω δ α

Rc

∆

θ

ω

X

Y

Br



Page 6
US Particle Accelerator School on Superconducting Accelerator Magnets, Jan. 22-26, 2001, Houston, TX.

A  Tangential  Coil  (or  Br Coil)

Number of Turns = N
Length of the coil = L
Opening Angle = ∆
Angular position at
time t=0: δ
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The voltage signal induced in the tangential coil is:
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The amplitude of the voltage signal is proportional to the angular velocity.
For analysis based on voltage signals, it is essential to control the angular
velocity and make corrections for any speed fluctuations. The integrated
voltage signal gives the flux, which is independent of angular velocity.

The radius, Rc, of the coil should be maximized to get good signal strength for
higher harmonics. The opening angle, ∆, should be large enough to give
enough signal and small enough so that sin(n∆/2) does not vanish for higher
harmonics of interest  (∆ << 2π/nmax). Typically, ∆  ~ 15 degrees.
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Sensitivity of a Tangential Coil to Various Harmonics (Rc = Rref)
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Typically, one is interested in precise measurement of about 15 harmonics. It
is clear from the above plot that a tangential coil with an opening angle of 20
degrees rapidly loses sensitivity for higher harmonics, although it is more
sensitive to lower harmonics as compared to a coil with 15 degrees opening
angle. On the other hand, the sensitivity of a coil with an opening angle of
only 10 degrees peaks at 36-pole term, which is of little relevance for
accelerator physics. Such a narrow angle, therefore, sacrifices sensitivity for
lower harmonics of interest with no useful outcome. It is clear from this plot
that optimum value of the opening angle is ∆ ~ 15 degrees.
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A “Dipole Coil” : Radial or Tangential ?

A “Dipole Coil” is a coil with a
specific geometry which has the
“Dipole Symmetry”, namely an
antisymmetry under rotation by π
radians. The flux through this coil
can be calculated by treating it as
a radial coil with R1 = –Rc and
R2 = +Rc, oriented at an angle θ,
as shown. The flux through the
coil can also be calculated by
treating it as a tangential coil
with an opening angle of π
radians, oriented at an angle of
θ’= θ +π/2. Both approaches
give the same result.
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The terms with n = even vanish in both the expressions. The flux through a
dipole coil is therefore given by:
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A “Dipole Coil” is therefore sensitive to only the odd harmonics, i.e., dipole,
sextupole, decapole, etc. Such a coil is almost universally used in both radial
and tangential coil systems for “bucking” the main dipole field.
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A Multipole Coil of Order m (A 2m-Pole  Coil)

Rc

X

Y

θ
π/m

θ'=θ+π/(2m)

A multipole coil of order m, or a 2m-pole coil is a coil with special geometry
that has m loops connected in series, as shown in the figure. For any angular
position characterized by the angle θ, the loops span the angular region of θ
to θ+(π/m),  (θ+2π/m) to (θ+3π/m), (θ+4π/m) to (θ+5π/m), and so on. The
flux through such a coil as a function of θ can be easily calculated by treating
it as an array of m identical tangential coils with opening angle of ∆ = π/m 
and having angular positions of θ’ = θ+(π/2m), θ’+2π/m , θ’+4π/m, and so
on.

The flux through the first segment of the coil is:
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A Multipole Coil of Order m (A 2m-Pole  Coil)
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The flux through the first segment of the coil is:
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The contribution due to harmonics which are EVEN MULTIPLES OF m VANISHES

due to the sin(nπ/2m) factor. Let us now consider the total flux through the
array of loops:
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Therefore, all terms in the summation vanish, except for those values of n
which are ODD MULTIPLES OF m.



Page 11
US Particle Accelerator School on Superconducting Accelerator Magnets, Jan. 22-26, 2001, Houston, TX.

A Multipole Coil of Order m (A 2m-Pole  Coil)
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Therefore, all terms in the summation vanish, except for those values of n
which are ODD MULTIPLES OF m. The total flux for the 2m-pole coil can be
written as:
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where k is any integer, including zero. If the coil rotates with an angular
velocity ω and θ = δ is the initial angular position of the coil, then θ = ωt +
δ. The flux and the voltage at any time t are:
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The results for a dipole coil are obtained by putting m = 1. Quadrupole coils
(m = 2) are commonly used for bucking in tangential coil systems. Sextupole
and other higher order coils may be used for special applications.
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Flux  Through  a  Coil  of  Arbitrary  Shape

We consider a coil
made up of a loop of
wire running parallel to
the Z-axis as shown in
the figure. The shape of
the coil is defined by a
path from the point z1

to z2 in the complex
plane. The length of the
loop is L along the
negative Z-axis, as
shown.

d r = an element along
the path from z1 to z2.

d s = $ | |n rd L  =
element of area defined
by the line element d r

The flux through the area element d s is given by B. d s. The area element is
given by the vector:
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Let us evaluate the integral of the complex field B(z) from z1 to z2:

B z z
z

z

z

z

1

2

1

2

( ) ( )( ) ( ) ( )d B iB dx idy B dx B dy i B dx B dyy x y x x y∫ ∫ ∫ ∫= + + = − + +

This leads us to the general result for a loop with N turns:
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A Rotating Coil of Arbitrary Shape

Let us consider a rotating coil
of arbitrary shape formed by a
loop of wire passing through
two points in the X-Y plane.
In general, both the radial and
the azimuthal coordinates of
these two points will be
different. The radial coil is a
special case where the
azimuthal coordinates of both
the points are either the same,
or differ by π. Similarly, the
tangential coil is a special
case where the radial
coordinates of the two points
are the same. Any angular
position of the coil is
characterized by an angle θ measured from an “initial position”. If z1 and z2
denote the locations of the two points in the complex plane at any instant,
then the flux through the coil of length  L  and with  N  turns is:
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From the figure: z z z z1 1 0 2 2 0= =, ,exp( ); exp( )i iθ θ .  Substituting in the
above expression for the flux, we get:
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where Kn is the “SENSITIVITY FACTOR” for the order n defined by:
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Tangential Coil as a Special Case of a General Coil
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For a tangential coil, when θ is measured from the X-axis,

z z1 0 2 02 2, ,exp( / ); exp( / )= = −R i R ic c∆ ∆
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The Sensitivity Factor for a tangential coil is purely imaginary. The flux at the
angular position  θ  is given by:

Φ
∆
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which is the same expression as derived by directly integrating the radial
component,  Br(Rc,θ),  over the angular extent of the coil.
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Radial Coil as a Special Case of a General Coil
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For a radial coil, when θ is measured from the X-axis, z z1 0 1 2 0 2, ,;= ± =R R .
It should be noted that  z1,0 = +R1 when R1 and R2 are on the same side of the
center and z1,0 = –R1 when R1 and R2 are on the opposite sides of the center.
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The Sensitivity Factor for a radial coil is purely real. The flux at the angular
position  θ  is given by:
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which is the same expression as derived by directly integrating the azimuthal
component, Bθ(r,θ), over the radial extent of the coil.
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An  Array  of  Rotating  Coils

Let us consider an array of M coils mounted on the same rotating system. Let
the sensitivity factor of the j-th coil for the n-th harmonic be denoted by

Kn
j j M( ) , , , , .= 1 2 3 L  Let all these coils be connected either in series, or in

opposition, to generate a combined signal. The total flux through this array of
coils is the algebraic sum of the fluxes through individual coils:

Φ Φ( ) ( )θ ε θ=
=

∑ j
j

M

j
1

where εj = +1 if the j-th coil is connected in series, and εj = –1 if the j-th coil
is connected in opposition. From the general formula for the flux through an
individual coil, we obtain:

Φ( ) Re ( )exp( )exp( )

Re ( )exp( )exp( ) ;
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  since   is real. 

=
=

=

where Kn  is the overall sensitivity of the array. From the above equation, it is
clear that the sensitivity of an array of M coils connected either in series or in
opposition is given by an algebraic sum of the sensitivities of the individual
coils:

K Kn j n
j

j

M
=

=
∑ε ( )

1

If the individual coils are properly designed and εj are appropriately chosen,
the overall sensitivity of an array of coils to a particular harmonic (or several
harmonics)  can be made zero.  This is the principle used in “bucking”.



Page 17
US Particle Accelerator School on Superconducting Accelerator Magnets, Jan. 22-26, 2001, Houston, TX.

Transverse Vibrations of the Rotation Axis

Let us consider a rotating coil of
a general shape whose rotation
axis has a displacement as the
coil rotates. This displacement,
D(θ), of the rotation axis in the
complex z-plane may be a func-
tion of the azimuthal angle, θ.
The positions of the two sides of
the coil loop at any angular
position, θ, are given by:

z z D z z D1 1 0 2 2 0= + = +, ,exp( ) ( ); exp( ) ( )i iθ θ θ θ

The expression for flux at any angular position, θ, is:
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2 0 1 0, ,
 SENSITIVITY FACTOR FOR n-th HARMONIC

Case I:  A Pure Dipole Field:

For a pure dipole field (n = 1), the expression for flux involves only the
quantity z2 – z1 = [z2,0 – z1,0].exp(iθ), which is independent of the
displacement, D(θ).  Thus, the flux linked through a coil in a pure dipole field
is unaffected by transverse displacements of the rotation axis. This result is
not too surprising because displacements in a pure dipole field do not produce
any feed down harmonics.

z1,0

z2,0

z1 = z1,0 eiθ + D(θ)

z2 = z2,0 eiθ + D(θ)

D(θ)

θ

X

Y
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Transverse Vibrations of the Rotation Axis
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Case II:  A Pure 2n-Pole Field:

An approximate expression for the flux in a pure 2n-pole field can be
evaluated by using a binomial expansion and neglecting terms of the second
and higher order in [D(θ)/Rref], assuming that  |D(θ)| << Rref. We get:

[ ]Φn n
in in

n
i n
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ine C n e e
n

R
C n en n( ) Re ( ) Re
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( )( )θ

θθ α θ α≈ +
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
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






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− −K K
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The flux picked up by a rotating coil in a pure 2n-pole field is, in general,
affected by transverse displacements of the rotation axis. To a first
approximation, the effect on the flux is proportional to the amplitude of the
displacement and the sensitivity of the coil to the 2(n–1)-pole terms. It should
be noted that the highest power of  D(θ)  in the expression for the flux from a
2n-pole field is  (n – 1). Thus, only the first term in the above expression
survives for a pure dipole field, whereas the first two terms represent the
complete expression for flux in a pure quadrupole field. For fields of higher
multipolarities, other higher order terms are also present, but can be neglected
in practice if the condition |D(θ)| << Rref   is satisfied.

If the coil is replaced by an array of coils whose combined sensitivity to the
2(n – 1)-pole term is zero, then the effect of small transverse vibrations is
practically eliminated. This is the basis for bucking the (n – 1)th harmonic.
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Periodic  Transverse  Motion  of  the  Rotation  Axis
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If the displacement amplitude, D(θ), is a periodic function of θ :
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In a pure 2n-pole field:
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The amount of “Spurious” 2m-pole harmonics in the measured flux is:
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For a sin(pθ) displacement, possible values of m = (p+n–1), (p–n+1), (n–p–1)
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Torsional Vibrations of the Rotation Axis
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z2 = z2,0 exp[iθ + iT(θ)]
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z1 = z1,0 exp[iθ + iT(θ)]
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Y

Let us consider a type of rotational imperfection where the position of the
rotating coil at angular postion θ is not at θ, but at an angle of θ + T(θ), as
shown in the figure. Such an imperfection may result either from an actual
torsional vibration of the rotating coil, or it could be due to errors in the
triggering of the data acquision. In general, the angular shift is a function of
the angle. The position of the coil is characterized by:

z z z z1 1 0 2 2 0= + = +, ,exp[ ( )]; exp[ ( )]i iT i iTθ θ θ θ

The flux through the coil is given by:

Φ( ) Re ( ) exp( )θ α=








 −









 −





































=

∞

∑
NLR

n
C n in

R R
ref

n
n

ref

n

ref

n

1

2 1z z

The sensitivity of the “perfect coil” to the 2n-pole field is defined as:
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Torsional Vibrations of the Rotation Axis
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In practice, the angular error, T(θ), is expected to be very small. Therefore,
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To a good approximation, the amplitude of distortion in a given harmonic
component of the flux seen by the coil is proportional to the amplitude of the
distortion as well as the sensitivity of the coil to the 2n-pole terms.

If the magnet has only one dominant harmonic, then the effect of torsional
vibrations can be minimized by making the sensitivity of the coil (or an array
of coils) zero for that particular hamonic. This is the basis for bucking out
the dominant harmonic term from the pick up signal. It should be noted
that if the magnet has large allowed or unallowed multipoles, the effect of
torsional vibrations is not completely cancelled.
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z1,0

z2,0

z2 = z2,0 exp[iθ + iT(θ)]
T(

θ)

θ

z1 = z1,0 exp[iθ + iT(θ)]

X

Y

Torsional Vibrations of the Rotation Axis:  Periodic Displacements
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If the displacement amplitude, T(θ), is a periodic function of θ :
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In a pure 2n-pole field:
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The amount of “Spurious” 2m-pole harmonics in the measured flux is:
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If T(θ) has a simple angular dependence of the form Tcos(pθ) or Tsin(pθ)
then it will produce spurious harmonics corresponding to 2(n+p)-pole and
2|(n–p)|-pole field.
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Example of a Practical Radial Coil with Bucking

HERA  Dipole Coil

Coil A: Main Coil

Coil B: Dipole Bucking Coil

Coil C: For compensating any
angular misalignment
of Coils A and B.

Condition for Bucking the
Dipole field component:

N r r N r rA B( ) ( )2 1 3 4− = +

HERA  Quadrupole Coil

The compensated signal is:

V V V VA B cbucked = − −

Coil D: For compensating any angular
misalignment of Coils.

Condition for Bucking the Dipole field
component:
N r r N r r N r rA B C( ) ( ) ( )2 1 3 4 5 6 0+ − + − + =

Condition for Bucking the Quadrupole
field component:

N r r N r r N r rA B C( ) ( ) ( )2
2

1
2

4
2

3
2

6
2

5
2 0− − − − − =

Other designs also exist with a similar philosophy.
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Example of a Practical Tangential Coil: the RHIC Coils

Tangential Winding: 15 degrees opening angle, 30 Turns
Dipole Buck Windings: 3 Turns each, at ±49.260 deg. wrt tangential
Quad Buck Windings: 3 Turns each, at ±24.840 deg. wrt tangential

Analysis is based on the Voltage signals, rather than the integrated voltage
signals (the flux). The bucked signal is defined as:

V V f V f V f V f Vbucked tangential DB1 DB2 QB1 QB2= + + + +1 2 4 5

With the above design,  f1 = f2 = f4 = f5 = –1 to buck out the dipole and the
quadrupole components in the bucked signal.

All RHIC measuring coils are built with the same basic design. The radii of
the windings are scaled to suit the aperture of the magnet to be measured.
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Analog  Bucking

In Analog Bucking, the various coil signals are added before doing any
analysis. The FFT is also carried out on one (or more) signal directly to get
the main harmonic component. The summing circuit must be tuned to
precisely cancel (a bucking factor of at least several hundred) the dipole and
the quadrupole components.

Data Acquisition
V(t),  ∫V.dt

FFT

S
U

M Data Acquisition
V(t),  ∫V.dt FFT

"Main" Coil

Other Coils

Calculate
the Main
Harmonic

Calculate
Other
Harmonics

Digital Bucking

In digital bucking, all the coil signals are acquired without any summing. The
summing coefficient for each signal is determined from a FFT analysis. These
coefficients are then calculated based on which two harmonics are to be
eliminated in the bucked signal. The bucked signal is then digitally
constructed and Fourier analyzed to get the harmonics.

V

V
V

V
V

FFT

C
oi

l S
ig

na
ls Calculate

Bucking
Factors

(Magnet
Specific)

Calculate
Bucked
Signal

FFT

Calculate
Harmonic
Amplitudes
and
Phases
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Bucking Algorithm for the RHIC Coil inVarious Magnets

Five Windings:

DB1: Dipole Coil

DB2: Dipole Coil

T: Tangential

QB1: Quad Coil

QB2: Quad Coil

DB1,DB2:  Sensitive to Dipole, Sextupole, Decapole, etc. terms.
QB1,QB2:  Sensitive to Quadrupole, Dodecapole, etc. terms.
T: Sensitive to all harmonics of interest.

Goal: To buck the most dominant, and the next lower order harmonic for
any magnet. (Not achieved for Octupole and Decapole magnets)

Magnet
Type

Use
DB1,DB2
to buck

Use
QB1,QB2
to buck

Calculation of Harmonics

Dipole Dipole Quadrupole
(optional)

♦ Dipole from DB1,DB2
♦ Quad from QB1,QB2 (if used)
♦ Rest from Bucked signal.

Quadrupole Dipole Quadrupole
♦ Dipole from DB1,DB2
♦ Quad from QB1,QB2
♦ Rest from Bucked signal.

Sextupole Sextupole Quadrupole
♦ Sextupole from Tangential
♦ Quad from QB1,QB2
♦ Rest from Bucked signal.

Decapole Decapole Quadrupole
(Optional)

♦ Decapole from Tangential
♦ Quad from QB1,QB2
♦ Rest from Bucked signal.

Dodecapole Decapole Dodecapole
♦ Dodecapole from Tangential
♦ Decapole from DB1,DB2
♦ Rest from Bucked signal.
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Calculation of the Bucked Signal

DB1: N1, R1, δ1

DB2: N2, R2, δ2

T: N3, R3, δ3, ∆
QB1: N4, R4, δ4

QB2: N5, R5, δ5

V V f V

f V f V

f V

bucked tangential DB1

DB2 QB1

QB2

= +

+ +

+

1

2 4

5

The values of the coefficients f1, f2, f4, f5  are calculated from the Fourier
analysis of the individual signals in such a way as to completely cancel two of
the harmonics chosen according to the type of the magnet being measured.

If n1 is the harmonic to be cancelled with the DB1 and DB2 windings, then
the design values of f1 and f2 are given by:

{ }
{ }
{ }
{ }

f
N
N

R
R

n
n

n n

f
N
N

R
R

n
n

n n

n

n

1
3

1

3

1

1 3 2

1 2 1

1 1

2
3

2

3

2

1 1 3

1 2 1

1 1

1

1

2 2

2 2

=















−
−













=















−
−













sin ( )
sin ( )

sin sin

sin ( )
sin ( )

sin sin

δ δ
δ δ

π

δ δ
δ δ

π

∆

∆

Similarly, if n2 is the harmonic to be cancelled using the QB1 and QB2:
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n1 f1 f2 n2 f4 f5

1 –1.00 –1.00 2 –1.00 –1.00
3 –2.26 –2.26 6 –2.06 –2.06
5 +7.57 +7.57 — — —
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Effect of the Finite Size of the Coil Windings

In practice, the coil windings
are not point-like. To
accommodate the necessary
number of turns, the winding
must have a finite cross
section. This could introduce
errors in the measurement of
the amplitude of the harmonics.
Although typical winding cross
sections are rectangular, it is
convenient to approximate it
with a sector of an annulus, as
shown in figure. The winding
is assumed to have an angular
width of (2α) and thickness
(2δ). The mean position of the
winding is denoted by z0 = R.exp(iφ). The sensitivity factor of the winding to
the 2n-pole term involves the quantity zn.  The value of zn averaged over the
cross section of the winding is:

∫ ∫ [ ][ ]
( )

exp( )

( )( )

( ) ( )

( )

exp( )
sin( )

( )( / )

sin( )

.

( ) ( )

z

z

n
avg

n

R

R
n n in in

n

n n

n

n n

r dr in d R R e e

in n

R in
n

n

R R

n R

n
n

R R

= =
+ − − −

+

=

+





− −

















+

=

+





− −

















−

+

−

+
+ + + −

+ +

+ +

δ

δ

φ α

φ α
φ α φ αφ φ

α δ

δ δ

αδ

φ
α

α

δ δ

δ

α
α

δ δ

2 2 4 1

1 1

2 1

1 1

1 1

1 1

0

1 1

2 1( )( / )n R+ δ

If the winding is assumed to be point like and located at the geometric center,
the above formula gives the error in estimating the amplitude of the 2n-pole
term. Expanding in a power series, it can be shown that the leading correction
terms are of the second order in α and (δ/R).

X

Y

2δ

φ

α

z0

z0 = R exp(iφ)
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Effect of a  1 mm × 1 mm  Winding Cross Section
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For a 25 mm  average radius of the measuring coil, the errors introduced with
a 1 mm wide and 1 mm thick winding are negligible for all the harmonics of
interest.  For a smaller radius coil, the errors are more pronounced, as
expected. However, even for a 10 mm radius coil,  the errors for the
harmonics of interest are still less than one percent. The finite size may,
however, be a serious limitation in measuring the transfer function of higher
multipole magnets (such as sextupoles, octupoles, etc. correctors) with a small
diameter measuring coil.
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 Random Variation of Winding Radius Along the Length

L

R(z)

z

R

Let us consider one segment of the coil loop in either a radial or a tangential
coil. The radius is assumed to vary randomly along the length L of the coil
with a mean value of Rc and a standard deviation of  σR. The effective
sensitivity factor of the coil for the n-th order harmonic is proportional to Rn.
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The sensitivity factor for the n-th harmonic is given by:
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In order to keep the error in the amplitude of the n = 15 term less than 1%,
we should have  σ R cR≤ −10 2 .  A somewhat tighter tolerance may be required
if such a coil is to be used to determine the transfer function in a magnet of
higher multipolarity, such as in a dodecapole corrector magnet.
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Random Variation of Angular Position Along the Length (Twist)

L

δ(z)
z

δ

Let us consider a tangential coil in which the radii and opening angle are
uniform along the length. However, the angular position, δ, is assumed to
vary randomly along the length L of the coil with a mean value of δc and a
standard deviation of  σδ.
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The flux seen by the coil for the 2n-pole field is:
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Expanding sin[nε(z)] and cos[nε(z)] in power series and retaining only the
terms up to the second order, it is easy to show that:
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The sensitivity factor for the n-th harmonic is given by:
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Random Variation in Opening Angle Along the Length (Tangential Coil)

L

∆(z)

z

∆

Let us consider a tangential coil in which the radii and the mean angular
position are uniform along the length. However, the opening angle, ∆, is
assumed to vary randomly along the length L of the coil with a mean value of
∆c  and  a standard deviation of  σ∆.
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The flux seen by the coil for the 2n-pole field is:
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Expanding sin[nε(z)/2] and cos[nε(z)/2] in power series and retaining only
up to the second order terms, it is easy to show that:
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The sensitivity factor for the n-th harmonic is given by:
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Imperfect Tangential Coil :  Unequal Radii of the Two Grooves

Let us consider a
slightly imperfect
tangential coil where
the two sides of the coil
loop are not at the same
radius. Such an
imperfection can be
real, resulting from
unequal depths of
grooves in the coil
form. Even with a
perfectly built coil,
such an imperfection
will be apparent if the
rotation axis does not
exactly coincide with
the geometric center of
the windings. It is
assumed here that the wires are located at radii of Rc – ε and Rc + ε.
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The first term can be identified to be related to the sensitivity of the perfect
coil. The second term implies that both amplitude and phase errors are
introduced in the sensitivity factor. Also, for coils such as the dipole coil with
∆ = π, the flux for a perfect coil is zero for even harmonics. This is no longer
the case with an imperfect coil. However, the allowed terms for a dipole coil
are not affected since cos(nπ/2) = 0 for odd values of n.
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Imperfect Tangential Coil :  Unequal Radii of the Two Grooves
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Assuming that sin(n∆/2) is not zero, as is the case for the harmonics of
interest in a practical tangential coil (∆≈15°):

z z2 0 1 0 2
2

1
2

2
2, , sin cot sin exp( )n n

c
n

c
c
n

n niR
n

i
n
R

n
iR

n
A in− ≈ − 





+






















 = − 





∆ ∆ ∆ε
λ

where An is an amplitude correction term and λn is a phase error given by:
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The amplitude error is of the second order in (ε/Rc) and can generally be
neglected. For typical values of (ε/Rc) ~ 10–3, the phase error could be several
milli-radians for the lowest order harmonics. The phase error reduces with the
order of the harmonic as roughly (1/n). The expression for flux is given by:
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Offset in the Rotation Axis
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Usually, a first order approximation is adequate:
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These results may also be used to estimate the effect of a “bow” or a bend in
the measuring coil. Different sections of such a coil will rotate about an axis
which is offset from the geometric center by different amounts. An upper
bound on the resulting effect can be obtained by equating ∆z0 to the total bend
in the measuring coil.
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Offset in the Rotation Axis
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and opening angle of 15 degrees, while the radial coil is assumed to have the
radii R2 = 25 mm and R1 = 8 mm (~ R1/3).
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Systematic Errors in Coil Parameters (Calibration Errors)

The coil parameters of primary interest are the radius (R), the angular position
at the start of the data acquision (δ), and in the case of a tangential coil, the
opening angle (∆). A systematic error in the knowledge of these parameters
will result in systematic errors in the calculation of the field parameters,
namely the amplitudes C(n) and the phase angles αn.

Systematic Error in the Radius:

K
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where Kn is the sensitivity factor for the n-th harmonic and ∆R is the
systematic error in the radius R.  For a (∆R/R) ~ 10–3, the systematic error in
the amplitude of the 20-pole term will be ~ 1%.

Systematic Error in the angular Position:

A systematic error, εδ , in the initial angular position, δ,  leads to the same
error in the determination of all the phase angles. This would give rise to
skew terms in a purely normal magnet, and vice versa.
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The multipoles in a magnet are generally expressed in a reference frame
where the main field component has a zero phase angle. In this case, there
will be no systematic error in the multipoles, since the phase angles relative to
the main field still remain the same. However, when accurate determination
of the field direction of the main component is required, such a systematic
error is unacceptable. Efforts must be made to periodically check the
calibration, and/or correct for the errors by making measurements from the
lead and non-lead ends of the magnet. For a 2m-pole magnet, the measured
phase angles from the lead and the non-lead ends are:
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Systematic Error in the Opening Angle of a Tangential Coil

The sensitivity factor, Kn, of a tangential coil depends on the opening angle,
∆,  as:
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For a systematic error ε∆ in the opening angle,
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Effect of a 1 mrad systematic error in the determination of the opening angle
of a tangential coil (∆ = 15 degrees). The error is significant for the lower
order harmonics. In a typical 5 winding tangential coil system, the dipole and
the quadrupole terms are obtained from the dipole (∆ = 180 degrees) and the
quadrupole windings (∆ = 90 degrees) which are practically insensitive to this
error.
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Effect of a Finite Averaging Time

In the acquisition of voltage data from the RHIC tangential coils, the signals
are averaged over one power line cycle to get rid of any AC noise on the
signals. At a typical angular speed of one revolution every 3.5 seconds and a
power line frequency of 60Hz, the coil rotates about 1.7 degrees during one
power line cycle. This motion during data integration can cause errors.

If ∆t is the averaging time, the n-th harmonic component in the measured
voltage signal is:
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where T is the period of rotation. For ∆t = 1/60 sec. and T = 3.5 sec,
(∆t/T) ~ 4.8×10–3.

The amplitude error is 0.004% for the dipole term and is 0.84% for the
30-pole term. This effect is negligible. However, the angle calibration is
affected by roughly 0.86 degrees (15 mrad). Fortunately, the error is harmonic
independent, and can be absorbed in the calibration of the coil, as long as the
angular velocity is kept the same. Considerable error will result, for example,
if the coil were to rotate in the opposite direction (ω → –ω).

In practice, the coil rotation period may not be the same during calibration
and measurements. It is necessary, therefore, to specify the rotation speed of
the measuring coil along with the angular parameters. Corrections must be
applied to the calibration values based on the actual rotation speed during the
measurements according to the above equations.
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Rotation Axis Different from the Magnetic Axis

If the rotation axis of the coil is
not coincident with the magnetic
axis of the magnet, the measured
harmonic coefficients are
affected by feed down.

O: Center of Measuring Coil
O’:Magnetic Center

z0 = x0 + iy0 = Location of
magnetic center in the
measuring coil frame.

If C(n) and αn are the measured
parameters in the measuring coil
frame, then the parameters in the magnet’s frame are given by:
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Magnetic center is defined as the location where an appropriate harmonic is
zero. For example, for a 2m-pole magnet other than a dipole, the magnetic
center is defined as the location where the 2(m–1)-pole term is zero.
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For most magnets, terms other than C(m) are small.  For small offsets,
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Rotation Axis Different from the Magnetic Axis
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For dipole magnets, no “natural” definition of a center can be used. Various
strategies are used to define the center of a dipole magnet. For example, one
could argue that the very high order unallowed terms are not sensitive to
small construction errors, and hence must be zero. If so, one could pick m in
the above expression to be a sufficiently high order allowed term and
calculate the center by requiring C’(m–1) to be zero. Of course, this works
only if C(m) itself has sufficient strength. Because of the large values of m,
the measured coefficients are of comparable strengths for both the allowed
and the unallowed harmonics, even with relatively small offsets. As a result, it
is often necessary to use higher order terms to calculate the offset. In many
cases, ambiguous results may be obtained because of the non-linear nature of
the equations. To resolve this, it is best to find a offset that will
simultaneously minimize several unallowed harmonics, rather than just one.

Other strategies for dipoles include the hysteretic centering, or minimization
of current dependence of quadrupole terms (cold data) or an “ugly quad”
method, used with much success for both warm and cold data at RHIC.
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The Quadrupole Configured Dipole (“Ugly Quad”) Method
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The quadrupole configured dipole method relies on powering the two coil
halves of a dipole magnet with opposite currents to produce a strong skew
quadrupole field, instead of a dipole field, as shown above. This requires a
center tap connection on the magnet. The allowed harmonics are now the
skew quadrupole, skew octupole, skew dodecapole, and so on. Several of
these allowed harmonics are quite strong, and feed down from any one of
them could be used to calculate the center.

Since two separate power supplies are required in this mode, it is important to
balance the current in the two halves with great accuracy, otherwise a
spurious dipole field will also be generated that would affect centering
calculations. The sensitivity to any current mismatch can be greatly
minimized by using feed down from the skew octupole term, rather than the
dominant skew quadrupole term.

This method has been used at RHIC with great success. The results from
QCD method have very little noise (typically only a few microns) and agree
very well with the centers calculated by making high order unallowed terms
zero.
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Sag of the Measuring Coil Due to its Own Weight

h

–L/2 +L/2

Z
r0(Z)

For a long and thin measuring coil, the weight of the coil itself may be
enough to cause a sagitta in the coil. In this case, each subsection of the coil
rotates about its local geometric center. However, the location of this center
varies along the length of the magnet, as shown by the dashed line in the
above figure. This is different from a “bow” or bend in the coil. Various
subsections of the coil see harmonics that are in a frame which is slightly
displaced from the adjacent subsections. If r0(Z) is the vertically downward
offset at axial position Z, the measured coefficients are given by:
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where (2k)!! = 2.4.6.8. ... 2k,  (2k+1)!! = 1.3.5. ... (2k+1)  and 0!! = 1.

For small values of  h, the effect of sag is the same as a uniform displacement
of the coil by an amount (2h/3). If the measured data are corrected for the
offset of the measuring coil axis, most of the errors due to sag are also
subtracted out, except for terms of second and higher orders in (h/Rref) which
can be neglected for reasonable values of h.
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Measuring Coil Axis Tilted wrt the Magnet Axis

Meas. Coil Axis

Lmagnet

ξr0
X

Y
Magnet Axis

r0

Y X

Average displacement of the measuring coil = 0
Displacements at the two ends are given by (r0, ξ) and (r0, ξ+π)

If the field quality of the magnet is uniform along the length, then the odd
orders of feed down from one half of the magnet will be cancelled by the
corresponding feed down from the other half of the magnet. The even orders
of feed down from the two halves will add to each other. The measured
coefficients in this case are given by:
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It should be noted that the summation includes only those values of k for
which (k–n) is even. The lowest order correction term is of second order in
(r0/Rref), and can be neglected in most cases for dipole and quadrupole
magnets, since there can not be any second order feed down from the main
field component. However, for sextupoles and magnets of higher
multipolarity, there can be a second order feed down from the main harmonic,
leading to large errors even with relatively small tilt. For example, the dipole
field component will be incorrectly measured in a sextupole magnet, the
quadrupole component in an octupole magnet, and so on.

Often, magnets have rather large harmonics in the lead end region which are
absent in the non-lead end region. In this case, even the first order terms from
the two halves will not cancel each other, causing  large errors. Examples of
such errors are in the measurement of integral decapole terms in a quadrupole
magnet having large dodecapole terms in the lead end region.
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Effect of Tilt  on  Measurements of Sextupole Magnets

Granite Table Measurements: Measuring Coil Axis Parallel to Magnet Axis
Vertical Dewar Measurements: Measuring Coil Axis may not be Parallel.
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Calibration of a Five-Winding Tangential Coil
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– ε

Rc +
 ε

1. Dipole Buck Winding (DB1): R1, δ1

2. Dipole Buck Winding (DB2): R2, δ2

3. Tangential Winding (T): R3, δ3, ∆, ε
4. Quadrupole Buck Winding (QB1): R4, δ4

5. Quadrupole Buck Winding (QB2): R5, δ5

Total Number of Parameters required = 12.

If a pure Dipole AND a pure Quadrupole magnet are available, with well
defined phase angles, then the angle parameters for the four buck windings
can be obtained without any difficulty. The measured angle of the tangential
in the two fields may not be the same due to the tilt, ε.  However, with well
calibrated dipole and quadrupole fields, one could estimate the tilt using the
expressions for the effect of a tilt.

• What if such calibrated magnets are not available ?

• How to get the various radii ?

• How to get the opening angle, ∆ ?

It is possible to get all the angles relative to each other, all the radii relative to
each other, the absolute value of the opening angle as well as the tangential
tilt — all without using any knowledge of the field strength or direction !
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Calibration of a Five-Winding Tangential Coil: Radii, ∆

Rc

∆

θ

ω

X

Y

R c 
– ε

Rc +
 ε

Effect of a “Tilt” in the Tangential winding:
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Vj(n) = Amplitude of n-th harmonic in the j-th winding.

In a Dipole field, assuming a measuring coil longer than the magnet:
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Similarly, in a quadrupole field:
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If the field strengths in the dipole and the quadrupole magnets are also
known, one can obtain the absolute values of R1, R2, R4, R5. From these
values, the absolute values of R3 and ∆ can also be determined. If the absolute
strengths are not known, one can only calculate the ratios of radii. Even then,
we have only four equations in five unknowns and need more information.
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Calibration of a Five-Winding Tangential Coil: Radii, ∆
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Vj(n) = Amplitude of n-th harmonic in the j-th winding.

From data in a Dipole field:
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From data in a Quadrupole field:
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To know relative radii, five Unknowns:  (R2/R1), (R3/R1), (R4/R1), (R5/R1), ∆
Need at least one more equation.  If we use a sextupole field:
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These equations give the five unknowns required to calculate the field
strengths, namely, (R2/R1), (R3/R1), (R4/R1), (R5/R1) and ∆. We get one
redundant equation, which could be used for consistency check on (R2/R1).
To know the absolute values of the radii, we need to determine just one
radius. This could be obtained easily if a reference field is available.
Otherwise, the value of R1 (or any other winding) can be simply guessed from
mechanical measurements, or calibrated against other known coils.
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Calibration of a Five-Winding Tangential Coil: Angles and  ε
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If reference dipole and quadrupole magnets are available with precisely
known phase angles, the angles δ1, δ2, δ4, and δ5  can be easily determined
from the phases of the dipole and the quadrupole components of the measured
signals. Also, we can get δ3(1) in a dipole magnet and δ3(2) in a quadrupole
magnet. These can be used to obtain δ3

0  and (ε/R3) using the relations:
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If the absolute phase angles of both the dipole and the quadrupole fields are
not known, we make use of a sextupole field also. We can determine:

In Dipole field:   δ2 – δ1 and δ3(1) – δ1

In Quadrupole field:   δ5 – δ4 and δ3(2) – δ4

In Sextupole field:   δ2 – δ1 and δ3(3) – δ1

Combining the data from the dipole and the sextupole fields, we get the
quantity δ3(3) – δ3(1), which depends on (ε/R3) and the opening angle, ∆.
Since ∆ is obtained from calibration of the radii, the parameter (ε/R3) is
determined. Knowing (ε/R3), one can calculate δ3(2)–δ1, which can be
combined with the data in a quadrupole field to get δ4 and δ5 also relative to
δ1. All angles are thus known relative to one of the windings. For measuring
coils equipped with a gravity sensor, the absolute angles can be obtained by
making measurements from the lead and the non-lead ends of a magnet. For
other systems, absolute values of angles are often unnecessary.


